方法¶
$$ \begin{array}{l} \tilde{x}=\lambda x_{i}+(1-\lambda) x_{j} \ \tilde{y}=\lambda y_{i}+(1-\lambda) y_{j} \end{array} $$
Mixup extends the training distribution by incorporating the prior knowledge that **linear
interpolations** of feature vectors should lead to linear interpolations of the associated targets.
其他¶
这篇论文方法非常简单, 不过细看下发现还有很多内容被忽略。
目的是解决以下问题:
- 记忆训练数据
- 对抗样本
- 同时能提高准确率
Empirical Risk Minimization(ERM) 经验风险最小化原则(可看李航《统计学习方法》)
- 最小化经验风险只能在训练集上做到 -> 会导致网络记住数据而无泛化能力
- 训练数据越多, 神经网络规模就应该越大 -> 矛盾是: 要保证ERM的可收敛性, 则网络(模型)的规模(size)不能随训练数据的增加一起变大
Vicinal Risk Minimization (VRM) 邻域风险最小化, 进行数据增广(data augmentation)
个人总结¶
疑问:¶
The size of these state-of-theart neural networks scales linearly with the number of training examples. ??? 还有这回事?
有意思的¶
learning theory
VC-complexity 不变, the convergence of ERM is guaranteed as long as the size of the learning machine (e.g., the neural network) does not increase with the number of training data.
¶
相关¶
-
Mixup ICLR 2018
-
manifold Mixup ICML 2019
-
AdaMixUp MixUp as Locally Linear Out-Of-Manifold Regularization AAAI 2019
-
CutMix ICCV2019(oral)
-
AugMix ICLR2020
-
Puzzle Mix ICML'20
-
Mixup+SemiSL->MixMatch NIPS2019
-
ReMixMatch ICLR2019
-
Mixup+Defense->Mixup Inference ICLR 2020
-
On Mixup Training Improved Calibration and Predictive Uncertainty NIPS2019
-
Nonlinear Mixup: Out-Of-Manifold Data Augmentation for Text Classification. AAAI 2020
-
Adversarial Domain Adaptation with Domain Mixup AAAI2020
-
Active Mixup for Data-Efficient Knowledge Distillation, CVPR2020
-
Adversarial Vertex Mixup, CVPR2020
-
Manifold Mixup for Few-shot Learning WACV2020
-
Improving Short Text Classification Through Global Augmentation Methods CD-MAKE 2020
-
Manifold Mixup Improves Text Recognition with CTC Loss ICDAR2019
-
Spatial Mixup IEEE ACCESS
-
Understanding mixup training methods, IEEE ACCESS
-
Unifying semi-supervised and robust learning by mixup ICLR 2019 Workshop
-
MetaMixup 未中
- SuperMix (被拒, 未中)
- Rethinking Image Mixture (unsupervised) 未中
- GraphMix (ICLR 被拒, 未中)
- FixMatch (MixMatch->ReMixMatch->FixMatch(+UDA+Cutout)未中)
- MixUp as Directional Adversarial Training (NIPS2019 ICLR2020 连拒, 未中)
- MixUp + Adversarial T 或 VAT? ICLR 上好像被拒的, 我看到过
Hongyu Guo, 一人薅了4篇, 2篇AAAI, 2篇 arxiv